pbootcms网站模板|日韩1区2区|织梦模板||网站源码|日韩1区2区|jquery建站特效-html5模板网

計算邊界框重疊的百分比,用于圖像檢測器評估

Calculating percentage of Bounding box overlap, for image detector evaluation(計算邊界框重疊的百分比,用于圖像檢測器評估)
本文介紹了計算邊界框重疊的百分比,用于圖像檢測器評估的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

In testing an object detection algorithm in large images, we check our detected bounding boxes against the coordinates given for the ground truth rectangles.

According to the Pascal VOC challenges, there's this:

A predicted bounding box is considered correct if it overlaps more than 50% with a ground-truth bounding box, otherwise the bounding box is considered a false positive detection. Multiple detections are penalized. If a system predicts several bounding boxes that overlap with a single ground-truth bounding box, only one prediction is considered correct, the others are considered false positives.

This means that we need to calculate the percentage of overlap. Does this mean that the ground truth box is 50% covered by the detected boundary box? Or that 50% of the bounding box is absorbed by the ground truth box?

I've searched but I haven't found a standard algorithm for this - which is surprising because I would have thought that this is something pretty common in computer vision. (I'm new to it). Have I missed it? Does anyone know what the standard algorithm is for this type of problem?

解決方案

For axis-aligned bounding boxes it is relatively simple. "Axis-aligned" means that the bounding box isn't rotated; or in other words that the boxes lines are parallel to the axes. Here's how to calculate the IoU of two axis-aligned bounding boxes.

def get_iou(bb1, bb2):
    """
    Calculate the Intersection over Union (IoU) of two bounding boxes.

    Parameters
    ----------
    bb1 : dict
        Keys: {'x1', 'x2', 'y1', 'y2'}
        The (x1, y1) position is at the top left corner,
        the (x2, y2) position is at the bottom right corner
    bb2 : dict
        Keys: {'x1', 'x2', 'y1', 'y2'}
        The (x, y) position is at the top left corner,
        the (x2, y2) position is at the bottom right corner

    Returns
    -------
    float
        in [0, 1]
    """
    assert bb1['x1'] < bb1['x2']
    assert bb1['y1'] < bb1['y2']
    assert bb2['x1'] < bb2['x2']
    assert bb2['y1'] < bb2['y2']

    # determine the coordinates of the intersection rectangle
    x_left = max(bb1['x1'], bb2['x1'])
    y_top = max(bb1['y1'], bb2['y1'])
    x_right = min(bb1['x2'], bb2['x2'])
    y_bottom = min(bb1['y2'], bb2['y2'])

    if x_right < x_left or y_bottom < y_top:
        return 0.0

    # The intersection of two axis-aligned bounding boxes is always an
    # axis-aligned bounding box
    intersection_area = (x_right - x_left) * (y_bottom - y_top)

    # compute the area of both AABBs
    bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1'])
    bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1'])

    # compute the intersection over union by taking the intersection
    # area and dividing it by the sum of prediction + ground-truth
    # areas - the interesection area
    iou = intersection_area / float(bb1_area + bb2_area - intersection_area)
    assert iou >= 0.0
    assert iou <= 1.0
    return iou

Explanation

Images are from this answer

這篇關于計算邊界框重疊的百分比,用于圖像檢測器評估的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: nalgene洗瓶,nalgene量筒,nalgene窄口瓶,nalgene放水口大瓶,浙江省nalgene代理-杭州雷琪实验器材有限公司 | 上海公司注册-代理记账-招投标审计-上海昆仑扇财税咨询有限公司 上海冠顶工业设备有限公司-隧道炉,烘箱,UV固化机,涂装设备,高温炉,工业机器人生产厂家 | 成都热收缩包装机_袖口式膜包机_高速塑封机价格_全自动封切机器_大型套膜机厂家 | 北京乾茂兴业科技发展有限公司 | 环氧树脂地坪漆_济宁市新天地漆业有限公司| Akribis直线电机_直线模组_力矩电机_直线电机平台|雅科贝思Akribis-杭州摩森机电科技有限公司 | 日本细胞免疫疗法_肿瘤免疫治疗_NK细胞疗法 - 免疫密码 | 定坤静电科技静电消除器厂家-除静电设备 | elisa试剂盒-PCR试剂盒「上海谷研实业有限公司」 | 航空连接器,航空插头,航空插座,航空接插件,航插_深圳鸿万科 | 运动木地板厂家_体育木地板安装_篮球木地板选购_实木运动地板价格 | 雾度仪_雾度计_透光率雾度仪价格-三恩时(3nh)光电雾度仪厂家 | 铝板冲孔网,不锈钢冲孔网,圆孔冲孔网板,鳄鱼嘴-鱼眼防滑板,盾构走道板-江拓数控冲孔网厂-河北江拓丝网有限公司 | 手板-手板模型-手板厂-手板加工-生产厂家,[东莞创域模型] | 证券新闻,热播美式保罗1984第二部_腾讯1080p-仁爱影院 | 皮带式输送机械|链板式输送机|不锈钢输送机|网带输送机械设备——青岛鸿儒机械有限公司 | 橡胶接头_橡胶软接头_套管伸缩器_管道伸缩器厂家-巩义市远大供水材料有限公司 | 华夏医界网_民营医疗产业信息平台_民营医院营销管理培训 | 自动螺旋上料机厂家价格-斗式提升机定制-螺杆绞龙输送机-杰凯上料机 | 钢制拖链生产厂家-全封闭钢制拖链-能源钢铝拖链-工程塑料拖链-河北汉洋机械制造有限公司 | 喷砂机厂家_自动喷砂机生产_新瑞自动化喷砂除锈设备 | 北京网站建设首页,做网站选【优站网】,专注北京网站建设,北京网站推广,天津网站建设,天津网站推广,小程序,手机APP的开发。 | 面粉仓_储酒罐_不锈钢储酒罐厂家-泰安鑫佳机械制造有限公司 | 产业规划_产业园区规划-产业投资选址及规划招商托管一体化服务商-中机院产业园区规划网 | 房在线-免费房产管理系统软件-二手房中介房屋房源管理系统软件 | 衢州装饰公司|装潢公司|办公楼装修|排屋装修|别墅装修-衢州佳盛装饰 | 山东PE给水管厂家,山东双壁波纹管,山东钢带增强波纹管,山东PE穿线管,山东PE农田灌溉管,山东MPP电力保护套管-山东德诺塑业有限公司 | 清洁设备_洗地机/扫地机厂家_全自动洗地机_橙犀清洁设备官网 | YT保温材料_YT无机保温砂浆_外墙保温材料_南阳银通节能建材高新技术开发有限公司 | 济南货架定做_仓储货架生产厂_重型货架厂_仓库货架批发_济南启力仓储设备有限公司 | 上海盐水喷雾试验机_两厢式冷热冲击试验箱-巨怡环试 | 紫外可见光分光度计-紫外分光度计-分光光度仪-屹谱仪器制造(上海)有限公司 | 搪玻璃冷凝器_厂家-越宏化工设备| 急救箱-应急箱-急救包厂家-北京红立方医疗设备有限公司 | 大功率金属激光焊接机价格_不锈钢汽车配件|光纤自动激光焊接机设备-东莞市正信激光科技有限公司 定制奶茶纸杯_定制豆浆杯_广东纸杯厂_[绿保佳]一家专业生产纸杯碗的厂家 | 冷凝水循环试验箱-冷凝水试验箱-可编程高低温试验箱厂家-上海巨为(www.juweigroup.com) | 钢格栅板_钢格板网_格栅板-做专业的热镀锌钢格栅板厂家-安平县迎瑞丝网制造有限公司 | 好笔杆子网 - 公文写作学习交流分享平台| RS系列电阻器,RK_RJ启动调整电阻器,RQ_RZ电阻器-上海永上电器有限公司 | 镀锌钢格栅_热镀锌格栅板_钢格栅板_热镀锌钢格板-安平县昊泽丝网制品有限公司 | 石家庄救护车出租_重症转院_跨省跨境医疗转送_活动赛事医疗保障_康复出院_放弃治疗_腾康26年医疗护送转诊团队 |