pbootcms网站模板|日韩1区2区|织梦模板||网站源码|日韩1区2区|jquery建站特效-html5模板网

  • <legend id='umfrM'><style id='umfrM'><dir id='umfrM'><q id='umfrM'></q></dir></style></legend>

      <small id='umfrM'></small><noframes id='umfrM'>

          <bdo id='umfrM'></bdo><ul id='umfrM'></ul>
        <i id='umfrM'><tr id='umfrM'><dt id='umfrM'><q id='umfrM'><span id='umfrM'><b id='umfrM'><form id='umfrM'><ins id='umfrM'></ins><ul id='umfrM'></ul><sub id='umfrM'></sub></form><legend id='umfrM'></legend><bdo id='umfrM'><pre id='umfrM'><center id='umfrM'></center></pre></bdo></b><th id='umfrM'></th></span></q></dt></tr></i><div class="x5lvrvz" id='umfrM'><tfoot id='umfrM'></tfoot><dl id='umfrM'><fieldset id='umfrM'></fieldset></dl></div>

      1. <tfoot id='umfrM'></tfoot>

        如何在組織內(nèi)共享數(shù)據(jù)

        How to share data across an organization(如何在組織內(nèi)共享數(shù)據(jù))
            <tbody id='DJ5br'></tbody>

          <legend id='DJ5br'><style id='DJ5br'><dir id='DJ5br'><q id='DJ5br'></q></dir></style></legend>
            <i id='DJ5br'><tr id='DJ5br'><dt id='DJ5br'><q id='DJ5br'><span id='DJ5br'><b id='DJ5br'><form id='DJ5br'><ins id='DJ5br'></ins><ul id='DJ5br'></ul><sub id='DJ5br'></sub></form><legend id='DJ5br'></legend><bdo id='DJ5br'><pre id='DJ5br'><center id='DJ5br'></center></pre></bdo></b><th id='DJ5br'></th></span></q></dt></tr></i><div class="1rndbn7" id='DJ5br'><tfoot id='DJ5br'></tfoot><dl id='DJ5br'><fieldset id='DJ5br'></fieldset></dl></div>

            • <small id='DJ5br'></small><noframes id='DJ5br'>

              <tfoot id='DJ5br'></tfoot>
                <bdo id='DJ5br'></bdo><ul id='DJ5br'></ul>
                  本文介紹了如何在組織內(nèi)共享數(shù)據(jù)的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧!

                  問題描述

                  組織在多個部門和應(yīng)用程序之間共享關(guān)鍵數(shù)據(jù)的好方法是什么?

                  What are some good ways for an organization to share key data across many deparments and applications?

                  舉個例子,假設(shè)有一個主要的應(yīng)用程序和數(shù)據(jù)庫來管理客戶數(shù)據(jù).組織中還有十個其他應(yīng)用程序和數(shù)據(jù)庫讀取該數(shù)據(jù)并將其與自己的數(shù)據(jù)相關(guān)聯(lián).目前,這種數(shù)據(jù)共享是通過混合數(shù)據(jù)庫 (DB) 鏈接、物化視圖、觸發(fā)器、臨時表、重新鍵入信息、Web 服務(wù)等來完成的.

                  To give an example, let's say there is one primary application and database to manage customer data. There are ten other applications and databases in the organization that read that data and relate it to their own data. Currently this data sharing is done through a mixture of database (DB) links, materialized views, triggers, staging tables, re-keying information, web services, etc.

                  還有其他好的方法來共享數(shù)據(jù)嗎?并且,您的方法與上述方法相比,在以下問題方面如何:

                • 重復(fù)數(shù)據(jù)
                • 容易出錯的數(shù)據(jù)同步過程
                • 緊耦合與松耦合(減少依賴/脆弱性/測試協(xié)調(diào))
                • 架構(gòu)簡化
                • 安全
                • 表現(xiàn)
                • 定義良好的接口
                • 其他相關(guān)問題?

                  Are there any other good approaches for sharing data? And, how do your approaches compare to the ones above with respect to concerns like:

                • duplicate data
                • error prone data synchronization processes
                • tight vs. loose coupling (reducing dependencies/fragility/test coordination)
                • architectural simplification
                • security
                • performance
                • well-defined interfaces
                • other relevant concerns?

                  請記住,共享客戶數(shù)據(jù)的使用方式多種多樣,從簡單的單記錄查詢到復(fù)雜的多謂詞、多排序、與存儲在不同數(shù)據(jù)庫中的其他組織數(shù)據(jù)的連接.

                  Keep in mind that the shared customer data is used in many ways, from simple, single record queries to complex, multi-predicate, multi-sort, joins with other organization data stored in different databases.

                  感謝您的建議和建議...

                  Thanks for your suggestions and advice...

                  推薦答案

                  我相信你已經(jīng)看到了,這取決于".

                  I'm sure you saw this coming, "It Depends".

                  這取決于一切.而A部門共享Customer數(shù)據(jù)的解決方案可能與B部門共享Customer數(shù)據(jù)完全不同.

                  It depends on everything. And the solution to sharing Customer data for department A may be completely different for sharing Customer data with department B.

                  多年來我最喜歡的概念是最終一致性"的概念.該術(shù)語來自亞馬遜談?wù)摲植际较到y(tǒng).

                  My favorite concept that has risen up over the years is the concept of "Eventual Consistency". The term came from Amazon talking about distributed systems.

                  前提是,雖然分布式企業(yè)中的數(shù)據(jù)狀態(tài)現(xiàn)在可能不完全一致,但最終"會如此.

                  The premise is that while the state of data across a distributed enterprise may not be perfectly consistent now, it "eventually" will be.

                  例如,當(dāng)客戶記錄在系統(tǒng) A 上更新時,系統(tǒng) B 的客戶數(shù)據(jù)現(xiàn)在已過時且不匹配.但是,最終",來自 A 的記錄將通過某個過程發(fā)送到 B.因此,最終,這兩個實例將匹配.

                  For example, when a customer record gets updated on system A, system B's customer data is now stale and not matching. But, "eventually", the record from A will be sent to B through some process. So, eventually, the two instances will match.

                  當(dāng)您使用單個系統(tǒng)時,您沒有EC",而是擁有即時更新、單一事實來源"以及通常用于處理競爭條件和沖突的鎖定機制.

                  When you work with a single system, you don't have "EC", rather you have instant updates, a single "source of truth", and, typically, a locking mechanism to handle race conditions and conflicts.

                  您的操作處理EC"數(shù)據(jù)的能力越強,分離這些系統(tǒng)就越容易.一個簡單的例子是銷售使用的數(shù)據(jù)倉庫.他們使用 DW 來運行他們的每日報告,但他們直到凌晨才運行他們的報告,而且他們總是查看昨天"(或更早)的數(shù)據(jù).因此,DW 無需實時與日常運營系統(tǒng)完全一致.一個流程在營業(yè)結(jié)束時運行并在大型單一更新操作中將交易和活動一起移動幾天,這是完全可以接受的.

                  The more able your operations are able to work with "EC" data, the easier it is to separate these systems. A simple example is a Data Warehouse used by sales. They use the DW to run their daily reports, but they don't run their reports until the early morning, and they always look at "yesterdays" (or earlier) data. So there's no real time need for the DW to be perfectly consistent with the daily operations system. It's perfectly acceptable for a process to run at, say, close of business and move over the days transactions and activities en masse in a large, single update operation.

                  你可以看到這個需求是如何解決很多問題的.沒有事務(wù)數(shù)據(jù)的爭用,不用擔(dān)心某些報告數(shù)據(jù)會在累積統(tǒng)計數(shù)據(jù)的過程中發(fā)生變化,因為報告對實時數(shù)據(jù)庫進行了兩次單獨的查詢.白天無需為高細節(jié)的喋喋不休吸納網(wǎng)絡(luò)和cpu處理等.

                  You can see how this requirement can solve a lot of issues. There's no contention for the transactional data, no worries that some reports data is going to change in the middle of accumulating the statistic because the report made two separate queries to the live database. No need to for the high detail chatter to suck up network and cpu processing, etc. during the day.

                  現(xiàn)在,這是 EC 的一個極端、簡化且非常粗略的示例.

                  Now, that's an extreme, simplified, and very coarse example of EC.

                  但是考慮像 Google 這樣的大型系統(tǒng).作為搜索的消費者,我們不知道谷歌在搜索頁面上獲得的搜索結(jié)果何時或需要多長時間.1毫秒?1秒?10s?10小時?很容易想象,如果您訪問 Google 的西海岸服務(wù)器,您很可能會得到與訪問他們的東海岸服務(wù)器不同的搜索結(jié)果.這兩個實例在任何時候都不是完全一致的.但在很大程度上,它們大多是一致的.對于他們的用例,他們的消費者并沒有真正受到滯后和延遲的影響.

                  But consider a large system like Google. As a consumer of Search, we have no idea when or how long it takes for a search result that Google harvests to how up on a search page. 1ms? 1s? 10s? 10hrs? It's easy to imaging how if you're hitting Googles West Coast servers, you may very well get a different search result than if you hit their East Coast servers. At no point are these two instances completely consistent. But by large measure, they are mostly consistent. And for their use case, their consumers aren't really affected by the lag and delay.

                  考慮電子郵件.A 想向 B 發(fā)送消息,但在此過程中,消息通過系統(tǒng) C、D 和 E 進行路由.每個系統(tǒng)都接受消息,對其承擔(dān)全部責(zé)任,然后將其交給另一個系統(tǒng).發(fā)件人看到電子郵件繼續(xù)發(fā)送.接收者不會真的錯過它,因為他們不一定知道它的到來.因此,該消息在系統(tǒng)中移動可能需要很長的時間窗口,而無需任何人知道或關(guān)心它的速度.

                  Consider email. A wants to send message to B, but in the process the message is routed through system C, D, and E. Each system accepts the message, assume complete responsibility for it, and then hands it off to another. The sender sees the email go on its way. The receiver doesn't really miss it because they don't necessarily know its coming. So, there is a big window of time that it can take for that message to move through the system without anyone concerned knowing or caring about how fast it is.

                  另一方面,A 可以和 B 通電話.我剛剛發(fā)送了,你收到了嗎?現(xiàn)在?現(xiàn)在?現(xiàn)在?現(xiàn)在收到?"

                  On the other hand, A could have been on the phone with B. "I just sent it, did you get it yet? Now? Now? Get it now?"

                  因此,存在某種潛在的、隱含的性能和響應(yīng)水平.最后,最終",A 的發(fā)件箱與 B 的收件箱匹配.

                  Thus, there is some kind of underlying, implied level of performance and response. In the end, "eventually", A's outbox matches B inbox.

                  這些延遲、對陳舊數(shù)據(jù)的接受,無論是一天前還是 1-5 秒前,都控制著您系統(tǒng)的最終耦合.此要求越寬松,耦合就越寬松,您在設(shè)計方面的靈活性就越大.

                  These delays, the acceptance of stale data, whether its a day old or 1-5s old, are what control the ultimate coupling of your systems. The looser this requirement, the looser the coupling, and the more flexibility you have at your disposal in terms of design.

                  這適用于 CPU 中的內(nèi)核.運行在同一系統(tǒng)上的現(xiàn)代、多核、多線程應(yīng)用程序可以對相同"數(shù)據(jù)有不同的看法,只有微秒過時.如果您的代碼可以在數(shù)據(jù)可能彼此不一致的情況下正常工作,那么快樂的一天,它會繼續(xù)前進.如果不是,您需要特別注意確保您的數(shù)據(jù)完全一致,使用易失性內(nèi)存限定或鎖定構(gòu)造等技術(shù).所有這些,都以他們的方式,性價比.

                  This is true down to the cores in your CPU. Modern, multi core, multi-threaded applications running on the same system, can have different views of the "same" data, only microseconds out of date. If your code can work correctly with data potentially inconsistent with each other, then happy day, it zips along. If not you need to pay special attention to ensure your data is completely consistent, using techniques like volatile memory qualifies, or locking constructs, etc. All of which, in their way, cost performance.

                  所以,這是基本考慮因素.所有其他決定都從這里開始.回答這個問題可以告訴您如何跨機器對應(yīng)用程序進行分區(qū)、共享哪些資源以及如何共享它們.哪些協(xié)議和技術(shù)可用于移動數(shù)據(jù),以及執(zhí)行傳輸?shù)奶幚沓杀?復(fù)制、負載均衡、數(shù)據(jù)共享等等,都是基于這個概念.

                  So, this is the base consideration. All of the other decisions start here. Answering this can tell you how to partition applications across machines, what resources are shared, and how they are shared. What protocols and techniques are available to move the data, and how much it will cost in terms of processing to perform the transfer. Replication, load balancing, data shares, etc. etc. All based on this concept.

                  編輯,回應(yīng)第一條評論.

                  Edit, in response to first comment.

                  正確,完全正確.這里的游戲,例如,如果 B 不能更改客戶數(shù)據(jù),那么更改客戶數(shù)據(jù)有什么危害?您可以冒險"讓它在短時間內(nèi)過時嗎?也許您的客戶數(shù)據(jù)進入的速度足夠慢,您可以立即將其從 A 復(fù)制到 B.假設(shè)更改被放在一個隊列中,由于音量低,很容易被取走(<1s),但即使如此,原始更改仍將超出事務(wù)",因此有一個小窗口,A 將有 B 沒有的數(shù)據(jù).

                  Correct, exactly. The game here, for example, if B can't change customer data, then what is the harm with changed customer data? Can you "risk" it being out of date for a short time? Perhaps your customer data comes in slowly enough that you can replicate it from A to B immediately. Say the change is put on a queue that, because of low volume, gets picked up readily (< 1s), but even still it would be "out of transaction" with the original change, and so there's a small window where A would have data that B does not.

                  現(xiàn)在大腦真的開始旋轉(zhuǎn)了.在那段滯后"期間會發(fā)生什么,最糟糕的情況是什么.你能圍繞它進行設(shè)計嗎?如果您可以設(shè)計大約 1 秒的延遲,那么您可能能夠設(shè)計大約 5 秒、1 米甚至更長的延遲.您在 B 上實際使用了多少客戶數(shù)據(jù)?也許 B 是一個旨在促進從庫存中揀貨的系統(tǒng).很難想象有什么比簡單的客戶 ID 和姓名更必要的了.只是在組裝時粗略地確定訂單是誰的東西.

                  Now the mind really starts spinning. What happens during that 1s of "lag", whats the worst possible scenario. And can you engineer around it? If you can engineer around a 1s lag, you may be able to engineer around a 5s, 1m, or even longer lag. How much of the customer data do you actually use on B? Maybe B is a system designed to facilitate order picking from inventory. Hard to imagine anything more being necessary than simply a Customer ID and perhaps a name. Just something to grossly identify who the order is for while it's being assembled.

                  揀貨系統(tǒng)不一定需要在揀貨過程結(jié)束前打印出所有客戶信息,屆時訂單可能已轉(zhuǎn)移到另一個可能更新的系統(tǒng),尤其是運輸信息,因此最終揀選系統(tǒng)根本不需要任何客戶數(shù)據(jù).事實上,您可以在揀配訂單中嵌入和非規(guī)范化客戶信息,因此無需或期望稍后進行同步.只要客戶 ID 是正確的(無論如何都不會更改)和名稱(更改很少,因此不值得討論),這是您唯一需要的真實參考,并且您的所有提貨單在當(dāng)時都是完全準(zhǔn)確的創(chuàng)作.

                  The picking system doesn't necessarily need to print out all of the customer information until the very end of the picking process, and by then the order may have moved on to another system that perhaps is more current with, especially, shipping information, so in the end the picking system doesn't need hardly any customer data at all. In fact, you could EMBED and denormalize the customer information within the picking order, so there's no need or expectation of synchronizing later. As long as the Customer ID is correct (which will never change anyway) and the name (which changes so rarely it's not worth discussing), that's the only real reference you need, and all of your pick slips are perfectly accurate at the time of creation.

                  關(guān)鍵在于思維方式,即分解系統(tǒng)并專注于任務(wù)所需的基本數(shù)據(jù).您不需要的數(shù)據(jù)不需要復(fù)制或同步.人們對非規(guī)范化和數(shù)據(jù)縮減等事情感到惱火,尤其是當(dāng)他們來自關(guān)系數(shù)據(jù)建模世界時.有充分的理由,應(yīng)該謹慎考慮.但是一旦你去分布式,你就隱式地非規(guī)范化了.哎呀,你現(xiàn)在正在批量復(fù)制它.所以,你最好更聰明一點.

                  The trick is the mindset, of breaking the systems up and focusing on the essential data that's necessary for the task. Data you don't need doesn't need to be replicated or synchronized. Folks chafe at things like denormalization and data reduction, especially when they're from the relational data modeling world. And with good reason, it should be considered with caution. But once you go distributed, you have implicitly denormalized. Heck, you're copying it wholesale now. So, you may as well be smarter about it.

                  所有這些都可以通過可靠的程序和對工作流程的透徹理解來緩解.識別風(fēng)險并制定政策和程序來處理它們.

                  All this can mitigated through solid procedures and thorough understanding of workflow. Identify the risks and work up policy and procedures to handle them.

                  但困難的部分是一開始就打破中央數(shù)據(jù)庫的鏈條,并告訴人們他們不能像他們期望的那樣擁有一切",當(dāng)您擁有一個單一的、中央的、完美的信息存儲時.

                  But the hard part is breaking the chain to the central DB at the beginning, and instructing folks that they can't "have it all" like they may expect when you have a single, central, perfect store of information.

                  這篇關(guān)于如何在組織內(nèi)共享數(shù)據(jù)的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

                  【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請聯(lián)系我們刪除處理,感謝您的支持!
                • 相關(guān)文檔推薦

                  Apache Nifi How to load JSON with nested array JSON and Call Oracle Stored Procedure(Apache Nifi 如何使用嵌套數(shù)組 JSON 加載 JSON 并調(diào)用 Oracle 存儲過程)
                  NIFI - QueryDatabaseTable processor. How to query rows which is modified?(NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行?)
                  Why Kafka jdbc connect insert data as BLOB instead of varchar(為什么 Kafka jdbc 將插入數(shù)據(jù)作為 BLOB 而不是 varchar 連接)
                  How to sink kafka topic to oracle using kafka connect?(如何使用kafka connect將kafka主題下沉到oracle?)
                  Why Kafka jdbc connect insert data as BLOB instead of varchar(為什么 Kafka jdbc 將插入數(shù)據(jù)作為 BLOB 而不是 varchar 連接)
                  Oracle replication data using Apache kafka(Oracle 使用 Apache kafka 復(fù)制數(shù)據(jù))
                  <legend id='puIgI'><style id='puIgI'><dir id='puIgI'><q id='puIgI'></q></dir></style></legend>

                  1. <i id='puIgI'><tr id='puIgI'><dt id='puIgI'><q id='puIgI'><span id='puIgI'><b id='puIgI'><form id='puIgI'><ins id='puIgI'></ins><ul id='puIgI'></ul><sub id='puIgI'></sub></form><legend id='puIgI'></legend><bdo id='puIgI'><pre id='puIgI'><center id='puIgI'></center></pre></bdo></b><th id='puIgI'></th></span></q></dt></tr></i><div class="htzp77t" id='puIgI'><tfoot id='puIgI'></tfoot><dl id='puIgI'><fieldset id='puIgI'></fieldset></dl></div>
                    <tfoot id='puIgI'></tfoot>
                        <bdo id='puIgI'></bdo><ul id='puIgI'></ul>

                          <tbody id='puIgI'></tbody>

                          <small id='puIgI'></small><noframes id='puIgI'>

                          1. 主站蜘蛛池模板: 爱佩恒温恒湿测试箱|高低温实验箱|高低温冲击试验箱|冷热冲击试验箱-您身边的模拟环境试验设备技术专家-合作热线:400-6727-800-广东爱佩试验设备有限公司 | nalgene洗瓶,nalgene量筒,nalgene窄口瓶,nalgene放水口大瓶,浙江省nalgene代理-杭州雷琪实验器材有限公司 | 蒸汽热收缩机_蒸汽发生器_塑封机_包膜机_封切收缩机_热收缩包装机_真空机_全自动打包机_捆扎机_封箱机-东莞市中堡智能科技有限公司 | 昆山PCB加工_SMT贴片_PCB抄板_线路板焊接加工-昆山腾宸电子科技有限公司 | 空心明胶胶囊|植物胶囊|清真胶囊|浙江绿键胶囊有限公司欢迎您! | 【法利莱住人集装箱厂家】—活动集装箱房,集装箱租赁_大品牌,更放心 | 涡街流量计_LUGB智能管道式高温防爆蒸汽温压补偿计量表-江苏凯铭仪表有限公司 | 济南网站建设|济南建网站|济南网站建设公司【济南腾飞网络】【荐】 | 铆钉机|旋铆机|东莞旋铆机厂家|鸿佰专业生产气压/油压/自动铆钉机 | 乳化沥青设备_改性沥青设备_沥青加温罐_德州市昊通路桥工程有限公司 | 电动高尔夫球车|电动观光车|电动巡逻车|电动越野车厂家-绿友机械集团股份有限公司 | 高温链条油|高温润滑脂|轴承润滑脂|机器人保养用油|干膜润滑剂-东莞卓越化学 | 天津次氯酸钠酸钙溶液-天津氢氧化钠厂家-天津市辅仁化工有限公司 | 冷藏车-东风吸污车-纯电动环卫车-污水净化车-应急特勤保障车-程力专汽厂家-程力专用汽车股份有限公司销售二十一分公司 | 广西教师资格网-广西教师资格证考试网 | 全自动实验室洗瓶机,移液管|培养皿|进样瓶清洗机,清洗剂-广州摩特伟希尔机械设备有限责任公司 | 骨密度检测仪_骨密度分析仪_骨密度仪_动脉硬化检测仪专业生产厂家【品源医疗】 | 阻燃剂-氢氧化镁-氢氧化铝-沥青阻燃剂-合肥皖燃新材料 | 聚氨酯保温钢管_聚氨酯直埋保温管道_聚氨酯发泡保温管厂家-沧州万荣防腐保温管道有限公司 | 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 - 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 | 上海网站建设-上海网站制作-上海网站设计-上海做网站公司-咏熠软件 | 四探针电阻率测试仪-振实密度仪-粉末流动性测定仪-宁波瑞柯微智能 | C形臂_动态平板DR_动态平板胃肠机生产厂家制造商-普爱医疗 | 专业深孔加工_东莞深孔钻加工_东莞深孔钻_东莞深孔加工_模具深孔钻加工厂-东莞市超耀实业有限公司 | 篮球地板厂家_舞台木地板品牌_体育运动地板厂家_凯洁地板 | 西门子伺服电机维修,西门子电源模块维修,西门子驱动模块维修-上海渠利 | 呼末二氧化碳|ETCO2模块采样管_气体干燥管_气体过滤器-湖南纳雄医疗器械有限公司 | 润滑脂-高温润滑脂-轴承润滑脂-食品级润滑油-索科润滑油脂厂家 | 活性炭-蜂窝-椰壳-柱状-粉状活性炭-河南唐达净水材料有限公司 | 建筑资质代办-建筑资质转让找上海国信启航 | 北京网络营销推广_百度SEO搜索引擎优化公司_网站排名优化_谷歌SEO - 北京卓立海创信息技术有限公司 | 东莞市踏板石餐饮管理有限公司_正宗桂林米粉_正宗桂林米粉加盟_桂林米粉加盟费-东莞市棒子桂林米粉 | 电伴热系统施工_仪表电伴热保温箱厂家_沃安电伴热管缆工业技术(济南)有限公司 | 户外-组合-幼儿园-不锈钢-儿童-滑滑梯-床-玩具-淘气堡-厂家-价格 | 起好名字_取个好名字_好名网免费取好名在线打分 | 英超直播_英超免费在线高清直播_英超视频在线观看无插件-24直播网 | 心肺复苏模拟人|医学模型|急救护理模型|医学教学模型上海康人医学仪器设备有限公司 | 扒渣机,铁水扒渣机,钢水扒渣机,铁水捞渣机,钢水捞渣机-烟台盛利达工程技术有限公司 | (中山|佛山|江门)环氧地坪漆,停车场地板漆,车库地板漆,聚氨酯地板漆-中山永旺地坪漆厂家 | 昆明挖掘机修理厂_挖掘机翻新再制造-昆明聚力工程机械维修有限公司 | 杰福伦_磁致伸缩位移传感器_线性位移传感器-意大利GEFRAN杰福伦-河南赉威液压科技有限公司 |