pbootcms网站模板|日韩1区2区|织梦模板||网站源码|日韩1区2区|jquery建站特效-html5模板网

混合不會去除 OpenCV 中的接縫

Blending does not remove seams in OpenCV(混合不會去除 OpenCV 中的接縫)
本文介紹了混合不會去除 OpenCV 中的接縫的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

我正在嘗試混合 2 個圖像,以便它們之間的接縫消失.

I am trying to blend 2 images so that the seams between them disappear.

第一張圖片:

第二張圖片:

如果混合應用:

如果應用了混合:

我使用了ALPHA BLENDING沒有接縫被移除;事實上圖像仍然相同但更暗

I used ALPHA BLENDING; NO seam removed; in fact image STILL SAME BUT DARKER

這是我進行混合的部分

Mat warped1;
warpPerspective(left,warped1,perspectiveTransform,front.size());// Warping may be used for correcting image distortion
imshow("combined1",warped1/2+front/2);
            vector<Mat> imgs;
            imgs.push_back(warped1/2);
            imgs.push_back(front/2);
            double alpha = 0.5; 
            int min_x = ( imgs[0].cols - imgs[1].cols)/2 ;
            int min_y = ( imgs[0].rows -imgs[1].rows)/2 ;
            int width, height;
            if(min_x < 0) {
                min_x = 0; 
                width = (imgs).at(0).cols;
            }
            else         
                width = (imgs).at(1).cols;
            if(min_y < 0) {
                min_y = 0; 
                height = (imgs).at(0).rows - 1;
            }

            else         
                height = (imgs).at(1).rows - 1;
            Rect roi = cv::Rect(min_x, min_y, imgs[1].cols, imgs[1].rows);  
            Mat out_image = imgs[0].clone();
            Mat A_roi= imgs[0](roi);
            Mat out_image_roi = out_image(roi);
            addWeighted(A_roi,alpha,imgs[1],1-alpha,0.0,out_image_roi);
            imshow("foo",imgs[0](roi));

推薦答案

我選擇根據到對象中心"的距離來定義 alpha 值,離對象中心越遠,alpha 值越小.對象"由掩碼定義.

I choose to define the alpha value depending on the distance to the "object center", the further the distance from the object center, the smaller the alpha value. The "object" is defined by a mask.

我已將圖像與 GIMP 對齊(類似于您的 warpPerspective).它們需要在相同的坐標系中,并且兩個圖像必須具有相同的大小.

I've aligned the images with GIMP (similar to your warpPerspective). They need to be in same coordinate system and both images must have same size.

我的輸入圖像如下所示:

My input images look like this:

int main()
{

cv::Mat i1 = cv::imread("blending/i1_2.png");
cv::Mat i2 = cv::imread("blending/i2_2.png");

cv::Mat m1 = cv::imread("blending/i1_2.png",CV_LOAD_IMAGE_GRAYSCALE);
cv::Mat m2 = cv::imread("blending/i2_2.png",CV_LOAD_IMAGE_GRAYSCALE);

    // works too, for background near white
    //  m1 = m1 < 220;
    //  m2 = m2 < 220;

//    edited:  using OTSU thresholding. If not working you have to create your own masks with a better technique
cv::threshold(m1,m1,255,255,cv::THRESH_BINARY_INV|cv::THRESH_OTSU);
cv::threshold(m2,m2,255,255,cv::THRESH_BINARY_INV|cv::THRESH_OTSU);

cv::Mat out = computeAlphaBlending(i1,m1,i2,m2);

cv::waitKey(-1);
return 0;
}

具有混合功能:我想需要一些評論和優化,我稍后會添加.

with blending function: needs some comments and optimizations I guess, I'll add them later.

cv::Mat computeAlphaBlending(cv::Mat image1, cv::Mat mask1, cv::Mat image2, cv::Mat mask2)
{
// edited: find regions where no mask is set
// compute the region where no mask is set at all, to use those color values unblended
cv::Mat bothMasks = mask1 | mask2;
cv::imshow("maskOR",bothMasks);
cv::Mat noMask = 255-bothMasks;
// ------------------------------------------

// create an image with equal alpha values:
cv::Mat rawAlpha = cv::Mat(noMask.rows, noMask.cols, CV_32FC1);
rawAlpha = 1.0f;

// invert the border, so that border values are 0 ... this is needed for the distance transform
cv::Mat border1 = 255-border(mask1);
cv::Mat border2 = 255-border(mask2);

// show the immediate results for debugging and verification, should be an image where the border of the face is black, rest is white
cv::imshow("b1", border1);
cv::imshow("b2", border2);

// compute the distance to the object center
cv::Mat dist1;
cv::distanceTransform(border1,dist1,CV_DIST_L2, 3);

// scale distances to values between 0 and 1
double min, max; cv::Point minLoc, maxLoc;

// find min/max vals
cv::minMaxLoc(dist1,&min,&max, &minLoc, &maxLoc, mask1&(dist1>0));  // edited: find min values > 0
dist1 = dist1* 1.0/max; // values between 0 and 1 since min val should alwaysbe 0

// same for the 2nd image
cv::Mat dist2;
cv::distanceTransform(border2,dist2,CV_DIST_L2, 3);
cv::minMaxLoc(dist2,&min,&max, &minLoc, &maxLoc, mask2&(dist2>0));  // edited: find min values > 0
dist2 = dist2*1.0/max;  // values between 0 and 1


//TODO: now, the exact border has value 0 too... to fix that, enter very small values wherever border pixel is set...

// mask the distance values to reduce information to masked regions
cv::Mat dist1Masked;
rawAlpha.copyTo(dist1Masked,noMask);    // edited: where no mask is set, blend with equal values
dist1.copyTo(dist1Masked,mask1);
rawAlpha.copyTo(dist1Masked,mask1&(255-mask2)); //edited

cv::Mat dist2Masked;
rawAlpha.copyTo(dist2Masked,noMask);    // edited: where no mask is set, blend with equal values
dist2.copyTo(dist2Masked,mask2);
rawAlpha.copyTo(dist2Masked,mask2&(255-mask1)); //edited

cv::imshow("d1", dist1Masked);
cv::imshow("d2", dist2Masked);

// dist1Masked and dist2Masked now hold the "quality" of the pixel of the image, so the higher the value, the more of that pixels information should be kept after blending
// problem: these quality weights don't build a linear combination yet

// you want a linear combination of both image's pixel values, so at the end you have to divide by the sum of both weights
cv::Mat blendMaskSum = dist1Masked+dist2Masked;
//cv::imshow("blendmask==0",(blendMaskSum==0));

// you have to convert the images to float to multiply with the weight
cv::Mat im1Float;
image1.convertTo(im1Float,dist1Masked.type());
cv::imshow("im1Float", im1Float/255.0);

// TODO: you could replace those splitting and merging if you just duplicate the channel of dist1Masked and dist2Masked
// the splitting is just used here to use .mul later... which needs same number of channels
std::vector<cv::Mat> channels1;
cv::split(im1Float,channels1);
// multiply pixel value with the quality weights for image 1
cv::Mat im1AlphaB = dist1Masked.mul(channels1[0]);
cv::Mat im1AlphaG = dist1Masked.mul(channels1[1]);
cv::Mat im1AlphaR = dist1Masked.mul(channels1[2]);

std::vector<cv::Mat> alpha1;
alpha1.push_back(im1AlphaB);
alpha1.push_back(im1AlphaG);
alpha1.push_back(im1AlphaR);
cv::Mat im1Alpha;
cv::merge(alpha1,im1Alpha);
cv::imshow("alpha1", im1Alpha/255.0);

cv::Mat im2Float;
image2.convertTo(im2Float,dist2Masked.type());

std::vector<cv::Mat> channels2;
cv::split(im2Float,channels2);
// multiply pixel value with the quality weights for image 2
cv::Mat im2AlphaB = dist2Masked.mul(channels2[0]);
cv::Mat im2AlphaG = dist2Masked.mul(channels2[1]);
cv::Mat im2AlphaR = dist2Masked.mul(channels2[2]);

std::vector<cv::Mat> alpha2;
alpha2.push_back(im2AlphaB);
alpha2.push_back(im2AlphaG);
alpha2.push_back(im2AlphaR);
cv::Mat im2Alpha;
cv::merge(alpha2,im2Alpha);
cv::imshow("alpha2", im2Alpha/255.0);

// now sum both weighted images and divide by the sum of the weights (linear combination)
cv::Mat imBlendedB = (im1AlphaB + im2AlphaB)/blendMaskSum;
cv::Mat imBlendedG = (im1AlphaG + im2AlphaG)/blendMaskSum;
cv::Mat imBlendedR = (im1AlphaR + im2AlphaR)/blendMaskSum;
std::vector<cv::Mat> channelsBlended;
channelsBlended.push_back(imBlendedB);
channelsBlended.push_back(imBlendedG);
channelsBlended.push_back(imBlendedR);

// merge back to 3 channel image
cv::Mat merged;
cv::merge(channelsBlended,merged);

// convert to 8UC3
cv::Mat merged8U;
merged.convertTo(merged8U,CV_8UC3);

return merged8U;
}

和輔助函數:

cv::Mat border(cv::Mat mask)
{
cv::Mat gx;
cv::Mat gy;

cv::Sobel(mask,gx,CV_32F,1,0,3);
cv::Sobel(mask,gy,CV_32F,0,1,3);

cv::Mat border;
cv::magnitude(gx,gy,border);

return border > 100;
}

結果:

忘記了一個函數;)現在保持原始背景

edit: forgot a function ;) edit: now keeping original background

這篇關于混合不會去除 OpenCV 中的接縫的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

Assertion failed (size.widthgt;0 amp;amp; size.heightgt;0)(斷言失敗(size.width0 amp;amp; size.height0))
Rotate an image in C++ without using OpenCV functions(在 C++ 中旋轉圖像而不使用 OpenCV 函數)
OpenCV: process every frame(OpenCV:處理每一幀)
Why can#39;t I open avi video in openCV?(為什么我不能在 openCV 中打開 avi 視頻?)
OpenCV unable to set up SVM Parameters(OpenCV 無法設置 SVM 參數)
Convert a single color with cvtColor(使用 cvtColor 轉換單一顏色)
主站蜘蛛池模板: 电动打包机_气动打包机_钢带捆扎机_废纸打包机_手动捆扎机 | 安平县鑫川金属丝网制品有限公司,防风抑尘网,单峰防风抑尘,不锈钢防风抑尘网,铝板防风抑尘网,镀铝锌防风抑尘网 | 变色龙云 - 打包app_原生app_在线制作平台_短链接_ip查询 | 超声波焊接机_超音波熔接机_超声波塑焊机十大品牌_塑料超声波焊接设备厂家 | 德国进口电锅炉_商用电热水器_壁挂炉_电采暖器_电热锅炉[德国宝] | 撕碎机_轮胎破碎机_粉碎机_回收生产线厂家_东莞华达机械有限公司 | 臭氧实验装置_实验室臭氧发生器-北京同林臭氧装置网 | 升降炉_真空气氛炉_管式电阻炉厂家-山东中辰电炉有限公司 | 超细|超微气流粉碎机|气流磨|气流分级机|粉体改性机|磨粉机|粉碎设备-山东埃尔派粉体科技 | 一技任务网_有一技之长,就来技术任务网 | 全自动过滤器_反冲洗过滤器_自清洗过滤器_量子除垢环_量子环除垢_量子除垢 - 安士睿(北京)过滤设备有限公司 | 上海律师事务所_上海刑事律师免费咨询平台-煊宏律师事务所 | 天津电机维修|水泵维修-天津晟佳机电设备有限公司 | 粤丰硕水性环氧地坪漆-防静电自流平厂家-环保地坪涂料代理 | 无缝钢管-聊城无缝钢管-小口径无缝钢管-大口径无缝钢管 - 聊城宽达钢管有限公司 | 石家庄装修设计_室内家装设计_别墅装饰装修公司-石家庄金舍装饰官网 | 铜镍-康铜-锰铜-电阻合金-NC003 - 杭州兴宇合金有限公司 | 山东led显示屏,山东led全彩显示屏,山东LED小间距屏,临沂全彩电子屏-山东亚泰视讯传媒有限公司 | 熔体泵|换网器|熔体齿轮泵|熔体计量泵厂家-郑州巴特熔体泵有限公司 | 胶水,胶粘剂,AB胶,环氧胶,UV胶水,高温胶,快干胶,密封胶,结构胶,电子胶,厌氧胶,高温胶水,电子胶水-东莞聚力-聚厉胶粘 | 锂电叉车,电动叉车_厂家-山东博峻智能科技有限公司 | 背压阀|减压器|不锈钢减压器|减压阀|卫生级背压阀|单向阀|背压阀厂家-上海沃原自控阀门有限公司 本安接线盒-本安电路用接线盒-本安分线盒-矿用电话接线盒-JHH生产厂家-宁波龙亿电子科技有限公司 | 【直乐】河北石家庄脊柱侧弯医院_治疗椎间盘突出哪家医院好_骨科脊柱外科专业医院_治疗抽动症/关节病骨伤权威医院|排行-直乐矫形中医医院 | 控显科技 - 工控一体机、工业显示器、工业平板电脑源头厂家 | 新疆散热器,新疆暖气片,新疆电锅炉,光耀暖通公司 | 商标转让-购买商标专业|放心的商标交易网-蜀易标商标网 | 安全阀_弹簧式安全阀_美标安全阀_工业冷冻安全阀厂家-中国·阿司米阀门有限公司 | 双段式高压鼓风机-雕刻机用真空泵-绍兴天晨机械有限公司 | 背压阀|减压器|不锈钢减压器|减压阀|卫生级背压阀|单向阀|背压阀厂家-上海沃原自控阀门有限公司 本安接线盒-本安电路用接线盒-本安分线盒-矿用电话接线盒-JHH生产厂家-宁波龙亿电子科技有限公司 | 电气控制系统集成商-PLC控制柜变频控制柜-非标自动化定制-电气控制柜成套-NIDEC CT变频器-威肯自动化控制 | Safety light curtain|Belt Sway Switches|Pull Rope Switch|ultrasonic flaw detector-Shandong Zhuoxin Machinery Co., Ltd | 深圳公司注册-工商注册公司-千百顺代理记账公司 | 臻知网大型互动问答社区-你的问题将在这里得到解答!-无锡据风网络科技有限公司 | 高压绝缘垫-红色配电房绝缘垫-绿色高压绝缘地毯-上海苏海电气 | 仓储货架_南京货架_钢制托盘_仓储笼_隔离网_环球零件盒_诺力液压车_货架-南京一品仓储设备制造公司 | 小青瓦丨古建筑瓦丨青瓦厂家-宜兴市徽派古典建筑材料有限公司 | PC构件-PC预制构件-构件设计-建筑预制构件-PC构件厂-锦萧新材料科技(浙江)股份有限公司 | 华中线缆有限公司-电缆厂|电缆厂家|电线电缆厂家 | 西安展台设计搭建_西安活动策划公司_西安会议会场布置_西安展厅设计西安旭阳展览展示 | 冷藏车-东风吸污车-纯电动环卫车-污水净化车-应急特勤保障车-程力专汽厂家-程力专用汽车股份有限公司销售二十一分公司 | 广东之窗网 |